Power Quality Improvement with Shunt and Hybrid APF Using PI and Hysteresis Current Controllers: Performance Comparison

Ravi Prakash Vishvakarma
Department of Electrical Engineering
Rama University, Kanpur
raviraj.vishvakarma@gmail.com

Satyaveer Gupt
Department of Electronics Instrumentation
IIMT College of Engineering, Gr. Noida
satyaveer.gupt@gmail.com

Abstract: This paper presents the performance comparison of Shunt Active Power Filter (SAPF) and Hybrid Active Power Filter (HAPF) for power quality improvement in terms of harmonics and reactive power compensation, and power factor improvement in the distribution network caused by nonlinear load. In the proposed control method, the compensation process is based on sensing of source currents only. A Proportional Integral (PI) controller is used to extract the required reference current from the distorted line current, and this controls the DC-side capacitor voltage of the inverter. Shunt APF is implemented with PWM-current controlled Voltage Source Inverter (VSI). The Hybrid APF is designed with shunt APF with shunt connected single tuned passive filters. The switching pattern is generated through hysteresis current controller.

Keywords: Power Quality, Active power filters (APF), Shunt APF, Hybrid APF, PI controller, Hysteresis current controller.

I. INTRODUCTION

As the last decade witnessed a widespread revolution in power electronics which boosted the public awareness towards power quality problems [1]. However power electronics based equipments such as adjustable –speed motor drives, electronic power supplies, DC motor drives, battery chargers are responsible for the rise in power quality related problems. The main power quality related problems are harmonic distortion, temporary interruptions, voltage sag, voltage swell, under voltages, voltage spikes and noise [2-3]. These devices include nonlinear loads that draw non-sinusoidal currents from source. Harmonic currents produced by nonlinear loads are injected back into distribution system through the point of common coupling (PCC). When the harmonic current passes through the line impedance of the system; harmonic voltages appear, causing distortion at the PCC [4-5].

When the harmonic current passes through the line impedance of the system; harmonic voltages appear, causing distortion at the PCC. Thus a typical power distribution system has to deal with harmonics and reactive power support. Suppression of harmonics involve two approaches, namely, passive and active powering. Conventionally, passive filters consisting of tuned L-C components have been widely used to suppress harmonics [6-8]. They have various advantages such as low cost, high efficiency and easy for maintenance, but large size, fixed compensation, instability, resonance with load and utility impedances are limitations of passive filters. As a result to overcome these short-comings of passive filters, Active Power Filters (APF) have been designed to improve the power quality at the consumer or distribution side. The operating principle of active power filter (APF) is to utilize power electronics technologies to produce specific current components that mitigate the current harmonics components caused by nonlinear load. The APF topology can be connected in series or shunt and combinations of both (unified power quality conditioner) as well as hybrid configurations [9-10].

Shunt active power filters are developed to suppress the harmonic currents and compensate reactive power simultaneously. Shunt active power filters compensate source current harmonics by injecting equal-but opposite harmonic compensating current, that make the supply current sinusoidal and in phase with the supply voltage. However, the applications of shunt active power filters (SAPF) in power system are limited by its high construction cost and power rating of the converters. Therefore, Hybrid Active Power Filter (HAPF) topologies have been developed to solve the problems of harmonic currents and reactive power effectively. Using low cost passive filters in the hybrid active filter, the power rating of active converter is reduced compared with that of shunt active filters. The hybrid active filters are cost effective and become more practical in industry applications [11-12].

In this paper, The performances of Shunt APF and hybrid APF consisting of active filter with shunt connected single tuned passive filters, have been analyzed with PI controllers based on
hysteresis current control technique. In each case, simulation is carried out under steady-state as well as transient-state conditions.

II. DESIGN OF SHUNT APF SYSTEM

The circuit diagram of shunt active power filter with proposed control scheme is shown in the Fig. 1. It is connected in parallel to the distribution grid at point of common coupling (PCC) through filter inductance.

![Circuit diagram of shunt APF system](image)

The filter inductance suppresses the harmonics caused by the switching operation of the Power inverter. The current harmonics compensation is achieved by injecting equal but opposite current harmonic component (I_h) at PCC, so that it cancels current harmonics on the AC side, and makes the source current in phase with the source voltage. The compensating current injected by the active power filter containing all the harmonics, to make mains current sinusoidal. From the Fig. 1, the instantaneous source current is represented as [13]

\[i_s = i_L - i_f \]

(1)

The instantaneous source voltage is written as

\[V_s(t) = V_m \sin \omega t \]

(2)

The non-linear load current includes a fundamental component and harmonic components which can be represented as [14]

\[i_L(t) = \sum_{n=1}^{\infty} I_n \sin (n \omega t + \phi_n) \]

\[= I_1 \sin (\omega t + \phi) + \sum_{n=2}^{\infty} I_n \sin (n \omega t + \phi_n) \]

(3)

The instantaneous load power can be calculated from the source voltage and load current and can be given as

\[P_L(t) = i_L(t)^* V_s(t) \]

From equation (5) it is clear that, this load power contains fundamental (active power), reactive, and harmonic power. From equation (5) the real (fundamental) power drawn from the load is given by

\[p_f(t) = V_m I_1 \sin^2 \omega t \cos \phi_1 \]

\[+ V_m I_1 \sin \omega t \cos(120^\circ) \sin \phi_1 \]

(4)

\[+ V_m \sin \omega t \frac{\sin \omega t}{n=2} \sum \sin(n \omega t + \phi_n) \]

\[= p_f(t) + p_r(t) + p_h(t) \]

(5)

Where, \(p_f(t) \)-Instantaneous real power,
\(p_r(t) \)-Instantaneous reactive power, and
\(p_h(t) \)-Instantaneous harmonic power.

The three-phase source currents, supplied by the source, after compensation can be expressed as

\[i_{sa}^*(t) = p_f(t)/v_s(t) = I_1 \cos \phi_1 \sin \omega t \]

\[= I_{\text{max}} \sin \omega t \]

(8)

Where,

\[I_{\text{max}} = I_1 \cos \phi_1 \]

Similarly,

\[i_{sb}^*(t) = I_{\text{max}} \sin(\omega t - 120^\circ) \]

(9)

\[i_{sc}^*(t) = I_{\text{max}} \sin(\omega t + 120^\circ) \]

(10)

The peak value of the reference current \(I_{\text{max}} \) can be estimated by controlling the DC side capacitor voltage of inverter by using PI controller.

III. DESIGN OF HYBRID APF SYSTEM

As explained in introduction, a hybrid active power filter is combination of an active filter and shunt connected single tuned passive filters for lower order dominant frequency. This section describes the design procedure of three phase passive filters.
using RLC elements. The design of passive filter is depends on following parameters [15-17]:

- Reactive power at nominal voltage.
- Tuning frequency.
- Quality factor.

Let the maximum value of reactive power is $X \text{ VAR}$ and the supply voltage is V_{rms}. The value of capacitance required (C) per phase can be calculated by following expression:

$$C = \frac{X}{(2 \cdot \pi \cdot f) \cdot V_{\text{rms}}^2} \quad (11)$$

Then, the value of R and L are found from the following equations:

$$R = \frac{1}{2 \cdot \pi \cdot f \cdot Q \cdot C} \quad (12)$$

$$L = \frac{RQ}{2 \cdot \pi \cdot f \cdot n} \quad (13)$$

Where, f is the fundamental frequency, Q is quality factor ($30 \leq Q \leq 60$), and n is order of harmonics.

IV. CONTROL TECHNIQUES

The controller is the most significant part of the active power filter. There are two major parts of the controllers: one is reference current generator and another is the switching patterns generator for inverter. The block diagram of proposed control scheme is shown in the Fig. 2. In this paper, compensation process is based on sensing of source currents only. This method is preferred because the reference current is generated without calculating either the load voltage harmonics or the load current harmonics. The reference current is extracted from the distorted line current using unit current vector along with PI controller. The carrier-less hysteresis based current controller decides the switching signals for the switching devices used in the APF system.

A. Reference Current Generator

The reference current generation process is based on sensing source current only. The reference current is generated from the distorted line current using unit current vector along with PI controller. The source currents are sensed and converted into the unit sine currents while corresponding phase angles are maintained [18-20]. The unit current vectors templates are represented as given in equation (14).

$$i_a = \sin \omega t$$

$$i_b = \sin(\omega t - 2\pi/3)$$

$$i_c = \sin(\omega t + 2\pi/3) \quad (14)$$

The amplitude of sine current is unity in steady state and in the transient condition it may increase or decrease according to the loads. These unit currents are multiplied with the output of PI controller to generate the desired reference currents. The PI control scheme involves regulation of the DC bus to set the amplitude of reference current for mitigation of harmonics and reactive power compensation. In this control scheme, the DC side capacitor voltage (V_{dc}) is sensed with reference DC-link voltage ($V_{dc,ref}$).

![Fig. 2 Block diagram of control scheme](image-url)

This comparison results a voltage error signal, which is fed to PI controller. The resulting error voltage $V_e(n)$ at the n^{th} sample instant is expressed as:

$$V_e(n) = V_{dc,ref}(n) - V_{dc}(n) \quad (15)$$

The transfer function of PI controller is defined as:

$$H(s) = K_p + K_i / S \quad (16)$$

Where, K_p and K_i are proportional and integral gain of PI controller. K_p determines the dynamic response of the DC-side capacitor voltage (V_{dc}). K_i determines settling time and eliminate steady state error in the DC-side capacitor voltage (V_{dc}). The output of the PI controller is considered as the magnitude of peak reference current I_{max}. This estimated magnitude of peak reference current (I_{max}) is multiplied with the output of unit current vector, which generates the required reference currents to compensate the harmonic components.

The block diagram of DC bus voltage control loop for designing of PI controller parameters is shown in Fig. 3. In the
block diagram \(G_c(s) \) is the gain of PI controller and \(K_f(s) \) is transfer function of shunt active power filter (plant for PI controller) [21].

\[
\frac{V_{dc}}{V_{dc,ref}} = \frac{1}{C_{dc}} \left(\frac{sK_p + K_I}{s^2 + \frac{K_P}{C_{dc}} + \frac{K_I}{C_{dc}}} \right) \tag{17}
\]

The value of \(K_p \) and \(K_i \) of the PI controller can be calculated by comparing equation (17) with the standard second order characteristic equation. From this comparison, the value of \(K_p \) and \(K_i \) of the PI controller can be calculated from equations (18-19).

\[
K_p = 2\xi\omega_n C_{dc} \tag{18}
\]

\[
K_i = \omega_n^2 C_{dc} \tag{19}
\]

Where \(\xi = \frac{\sqrt{2}}{2} \) is known as damping ratio and \(\omega_n \) = Natural fundamental frequency in rad/ sec.

B. Hysteresis Current Controller

The hysteresis current controller decides the switching patterns for the switches used in the APF system. It imposes a bang- bang instantaneous control method that draws the APF compensation current to follow its reference signal within a certain band limits. The actual current \(i_{\text{actual}}(t) \) is compared with \(i_{\text{ref}}(t) \) and the resulting error is subjected to a hysteresis controller to determine the gating signals of the inverter as shown in Fig. 4.

If the error current exceeds the upper limit of the hysteresis band, the upper switch of the APF arm is turned OFF and the lower switch is turned ON. As a result, the current starts to decay. If the error current crosses the lower limit of the band, the lower switch is turned OFF and the upper switch is turned ON. As a result, the current gets back into the hysteresis band [22-23].

\[
S = \begin{cases}
\text{OFF, if } i_{\text{actual}}(t) > i_{\text{ref}}(t) + H \\
\text{ON, if } i_{\text{actual}}(t) < i_{\text{ref}}(t) - H
\end{cases} \tag{20}
\]

Here, \(H \) is the width of the hysteresis band around which the reference currents. The advantages of HCC are simple design and unconditioned stability.

V. SIMULATION RESULTS

The performance of Shunt and hybrid active power filters is evaluated through MATLAB/SIMULINK 7.7.0 environment. The performance is compared under steady-state as well as transient-state conditions. The simulation parameters are given in Table-1.

![Diagram](image)

Fig. 4 Gating signal produced by hysteresis current controller

This switching performance is defined as

TABLE I. SYSTEM PARAMETERS FOR SIMULATION STUDY

<table>
<thead>
<tr>
<th>No.</th>
<th>System Parameters</th>
<th>Values of parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Source Voltage (Vs)</td>
<td>230 V(rms)</td>
</tr>
<tr>
<td>2.</td>
<td>Source Impedance</td>
<td>(R_s = 20 , \text{m}\Omega, \ L_s = 0.5 , \text{mH})</td>
</tr>
<tr>
<td>3.</td>
<td>Non-linear Load Impedance</td>
<td>(R_l = 10 , \Omega, \ L_l = 100 , \text{mH})</td>
</tr>
<tr>
<td>4.</td>
<td>Active Filter Impedance</td>
<td>(R_f = 3.5 , \Omega, \ L_f = 1.5 , \text{mH})</td>
</tr>
<tr>
<td>5.</td>
<td>Passive Filter Impedance</td>
<td>(L_{pf} = 4 , \text{mH}, \ C_{pf} = 100 , \mu\text{F})</td>
</tr>
<tr>
<td>6.</td>
<td>DC Link Capacitance</td>
<td>4000 , \mu\text{F}</td>
</tr>
<tr>
<td>7.</td>
<td>DC-Link Voltage</td>
<td>(V_{dc,ref} = 350 , \text{V})</td>
</tr>
<tr>
<td>8.</td>
<td>Hysteresis Band Range</td>
<td>(\pm 0.01)</td>
</tr>
</tbody>
</table>

Case 1: Performance at constant supply voltage (230 V rms) and fixed non-linear load

The MATLAB/Simulink results of reference phase without compensation are shown in Figs. 5(a, b, c, d and e). In the results phase \(-A \) is taken as reference phase. Before compensation, the THD of the source current is 26.53%, which is equal the THD of load current, while THD of source voltage before compensation is 5.62%.
Fig. 5 Simulation results before compensation

As depicted in Fig. 5(d), before compensation at source side, the real and reactive power is 7.3 kW and 3.5 kvar respectively. The power factor before compensation is 0.8994.

The MATLAB/Simulink diagram of the system using shunt active power filter is shown in the Fig. 6. The three-phase shunt APF system comprises six-IGBTs with diodes, a dc-bus capacitor, RL-filter, compensation controller and switching pattern generator. The Simulation results of the reference phase, after compensation using shunt APF are shown in Figs. 7(a, b, c, d, e, f, and g).

Fig. 6 Simulation diagram of shunt APF system

After compensation using shunt active power filter, the THD of source current is reduced from 26.53% to 6.78 %, while the THD of source voltage is reduced from 5.62 % to 3.9 %.

The MATLAB/Simulink diagram of the system using hybrid active power filter is shown in the Fig. 8. The three-phase hybrid APF system consists of a shunt APF and shunt connected single tuned passive filters for lower order dominant frequency. The Simulation results of the reference phase, after compensation using hybrid APF are shown in Figs. 9(a, b, c, d, e, and f).

Fig. 8 Simulation diagram of hybrid APF system
As depicted in Fig. 9(f) after compensation, source voltage and current are exactly in same phase. Therefore, power factor at source side is equal to unity. After compensation using hybrid active power filter, the THD of source current is reduced from 26.53% to 3.97%, while the THD of source voltage is reduced from 5.62% to 2.85%. After compensation the THD of source voltage and current is below 3% and 5% respectively, which is recommended by the IEE-519: 1992 standards.

Case 2: When supply voltage (230 V rms) is suddenly increased to 15% and at fixed non-linear load

In this case, the operation of the system is performed at fixed nonlinear load having resistance 10Ω and inductance L = 100 mH. During the entire operation initially, the supply voltage is constant at reference level 230 V rms, at t = 0.85 sec, the source voltage is suddenly increased to 15% for 0.30 sec. After t=1.15 sec., again the supply voltage is at reference level 230 V rms. Under this condition, the simulation results of reference phase, before compensation are shown in Figs. 10 (a, b, c, d).

Fig. 9 Simulation results after compensation using hybrid APF

Fig. 10 Simulation results before compensation

Under this condition, the simulation results of reference phase, after compensation using shunt APF are shown in Figs. 11 (a, b, c, d, e and f).

Fig. 11 Simulation results after compensation using shunt APF
Under this condition, the simulation results of reference phase, after compensation using hybrid APF are shown in Figs. 12 (a, b, c, d, e, and f).

![Source current waveform]

(a) Source current waveform

![Compensating current waveform]

(b) Compensating current waveform

![Waveform of DC offset voltage]

(c) Waveform of DC offset voltage

![Harmonics spectrum of source current]

(d) Harmonics spectrum of source current

![Source voltage and current waveform]

(e) Source voltage and current waveform

![Source voltage and current waveform]

(f) Source voltage and current waveform

Fig. 12 Simulation results after compensation using hybrid APF

As depicted in Fig. 12(f) after compensation, source voltage and current are exactly in same phase. Therefore, power factor at source side is equal to unity. Under this condition, after compensation using hybrid APF the THD of source current is reduced from 26.53% to 4.51%, while the THD of source voltage is reduced from 5.2% to 2.82%.

The performance comparison of shunt and hybrid APF are listed in Tables 2-3, for both steady-states as well as transient state-conditions. These performance comparisons are listed in Tables 2-3.

TABLE II PERFORMANCE COMPARISON OF SHUNT AND HYBRID APFS UNDER STEADY-STATE CONDITIONS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Without Filter</th>
<th>With Compensator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>With Shunt APF</td>
</tr>
<tr>
<td>T.H.D of Source voltage</td>
<td>5.62%</td>
<td>3.90%</td>
</tr>
<tr>
<td>T.H.D of Source current</td>
<td>26.53%</td>
<td>6.78%</td>
</tr>
<tr>
<td>Active Power</td>
<td>7.2 kW</td>
<td>7.8 kW</td>
</tr>
<tr>
<td>Reactive Power</td>
<td>3.5 kvar</td>
<td>2.5 kvar</td>
</tr>
<tr>
<td>Power Factor</td>
<td>0.8994</td>
<td>0.9523</td>
</tr>
</tbody>
</table>

TABLE III PERFORMANCE COMPARISON OF SHUNT AND HYBRID APFS UNDER TRANSIENT-STATE CONDITIONS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Without Filter</th>
<th>With Compensator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>With Shunt APF</td>
</tr>
<tr>
<td>Source voltage T.H.D</td>
<td>5.62%</td>
<td>3.87%</td>
</tr>
<tr>
<td>Source current T.H.D</td>
<td>26.53%</td>
<td>6.67%</td>
</tr>
<tr>
<td>Active Power</td>
<td>10.5 kW</td>
<td>11 kW</td>
</tr>
<tr>
<td>Reactive Power</td>
<td>5.25 kvar</td>
<td>4.45 kvar</td>
</tr>
<tr>
<td>Power Factor</td>
<td>0.8944</td>
<td>0.9270</td>
</tr>
</tbody>
</table>

The dynamic performance of shunt and hybrid APF is also compared at constant as well as variable supply voltage. These comparisons are listed in Tables 4-5.

TABLE IV DYNAMIC PERFORMANCE COMPARISON OF SHUNT AND HYBRID APFS AT CONSTANT SUPPLY VOLTAGE

<table>
<thead>
<tr>
<th>Performance Parameters</th>
<th>Without Shunt APF</th>
<th>With Hybrid APF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settling Time of V_{DC}</td>
<td>0.55 sec</td>
<td>0.35 sec</td>
</tr>
<tr>
<td>Settling Time of Source Current</td>
<td>0.25 sec</td>
<td>0.15 sec</td>
</tr>
<tr>
<td>Max. Overshoot of source current</td>
<td>12.5 A</td>
<td>10 A</td>
</tr>
<tr>
<td>Max. Overshoot of V_{DC}</td>
<td>18 V</td>
<td>15 V</td>
</tr>
<tr>
<td>Output Ripple of V_{DC}</td>
<td>1.8%</td>
<td>1.65%</td>
</tr>
</tbody>
</table>
VI. CONCLUSIONS

The Performance of PI controller based shunt and hybrid active power filters using hysteresis current control technique have been investigated under both steady-state and transient-state conditions for power quality improvement. Exhaustive simulations studies are carried out to analyze the performance of the system for harmonic and reactive power compensation for non-linear load. It is observed from simulation results that hybrid active power gives better performance as compared to shunt active power filter. The THD of the source voltage and source current are below 5% and 3% respectively using hybrid active power filter, which is recommended by IEEE 519: 1992 standard. The dynamic performances of both shunt and hybrid active power filters have been also studied and compared for constant as well as variable source voltages. It is observed from the comparison tables that hybrid APF provides better dynamic performances as compared to shunt APF in terms settling time, maximum overshoot, and maximum undershoot, and output ripple of DC offset voltage.

REFERENCES

[1] H. Akagi, Y. Kanazawa and A. Nabae, “Instantaneous reactive power compensators comprising switching circuit current control technique have been investigated under both steady-state and transient-state conditions for power quality improvement. Exhaustive simulations studies are carried out to analyze the performance of the system for harmonic and reactive power compensation for non-linear load. It is observed from simulation results that hybrid active power gives better performance as compared to shunt active power filter. The THD of the source voltage and source current are below 5% and 3% respectively using hybrid active power filter, which is recommended by IEEE 519: 1992 standard. The dynamic performances of both shunt and hybrid active power filters have been also studied and compared for constant as well as variable source voltages. It is observed from the comparison tables that hybrid APF provides better dynamic performances as compared to shunt APF in terms settling time, maximum overshoot, and maximum undershoot, and output ripple of DC offset voltage.

REFERENCES

[1] H. Akagi, Y. Kanazawa and A. Nabae, “Instantaneous reactive power compensators comprising switching circuit current control technique have been investigated under both steady-state and transient-state conditions for power quality improvement. Exhaustive simulations studies are carried out to analyze the performance of the system for harmonic and reactive power compensation for non-linear load. It is observed from simulation results that hybrid active power gives better performance as compared to shunt active power filter. The THD of the source voltage and source current are below 5% and 3% respectively using hybrid active power filter, which is recommended by IEEE 519: 1992 standard. The dynamic performances of both shunt and hybrid active power filters have been also studied and compared for constant as well as variable source voltages. It is observed from the comparison tables that hybrid APF provides better dynamic performances as compared to shunt APF in terms settling time, maximum overshoot, and maximum undershoot, and output ripple of DC offset voltage.

REFERENCES

[1] H. Akagi, Y. Kanazawa and A. Nabae, “Instantaneous reactive power compensators comprising switching circuit current control technique have been investigated under both steady-state and transient-state conditions for power quality improvement. Exhaustive simulations studies are carried out to analyze the performance of the system for harmonic and reactive power compensation for non-linear load. It is observed from simulation results that hybrid active power gives better performance as compared to shunt active power filter. The THD of the source voltage and source current are below 5% and 3% respectively using hybrid active power filter, which is recommended by IEEE 519: 1992 standard. The dynamic performances of both shunt and hybrid active power filters have been also studied and compared for constant as well as variable source voltages. It is observed from the comparison tables that hybrid APF provides better dynamic performances as compared to shunt APF in terms settling time, maximum overshoot, and maximum undershoot, and output ripple of DC offset voltage.

REFERENCES

[1] H. Akagi, Y. Kanazawa and A. Nabae, “Instantaneous reactive power compensators comprising switching circuit current control technique have been investigated under both steady-state and transient-state conditions for power quality improvement. Exhaustive simulations studies are carried out to analyze the performance of the system for harmonic and reactive power compensation for non-linear load. It is observed from simulation results that hybrid active power gives better performance as compared to shunt active power filter. The THD of the source voltage and source current are below 5% and 3% respectively using hybrid active power filter, which is recommended by IEEE 519: 1992 standard. The dynamic performances of both shunt and hybrid active power filters have been also studied and compared for constant as well as variable source voltages. It is observed from the comparison tables that hybrid APF provides better dynamic performances as compared to shunt APF in terms settling time, maximum overshoot, and maximum undershoot, and output ripple of DC offset voltage.

REFERENCES

[1] H. Akagi, Y. Kanazawa and A. Nabae, “Instantaneous reactive power compensators comprising switching circuit current control technique have been investigated under both steady-state and transient-state conditions for power quality improvement. Exhaustive simulations studies are carried out to analyze the performance of the system for harmonic and reactive power compensation for non-linear load. It is observed from simulation results that hybrid active power gives better performance as compared to shunt active power filter. The THD of the source voltage and source current are below 5% and 3% respectively using hybrid active power filter, which is recommended by IEEE 519: 1992 standard. The dynamic performances of both shunt and hybrid active power filters have been also studied and compared for constant as well as variable source voltages. It is observed from the comparison tables that hybrid APF provides better dynamic performances as compared to shunt APF in terms settling time, maximum overshoot, and maximum undershoot, and output ripple of DC offset voltage.

REFERENCES

[1] H. Akagi, Y. Kanazawa and A. Nabae, “Instantaneous reactive power compensators comprising switching circuit current control technique have been investigated under both steady-state and transient-state conditions for power quality improvement. Exhaustive simulations studies are carried out to analyze the performance of the system for harmonic and reactive power compensation for non-linear load. It is observed from simulation results that hybrid active power gives better performance as compared to shunt active power filter. The THD of the source voltage and source current are below 5% and 3% respectively using hybrid active power filter, which is recommended by IEEE 519: 1992 standard. The dynamic performances of both shunt and hybrid active power filters have been also studied and compared for constant as well as variable source voltages. It is observed from the comparison tables that hybrid APF provides better dynamic performances as compared to shunt APF in terms settling time, maximum overshoot, and maximum undershoot, and output ripple of DC offset voltage.

REFERENCES

[1] H. Akagi, Y. Kanazawa and A. Nabae, “Instantaneous reactive power compensators comprising switching circuit current control technique have been investigated under both steady-state and transient-state conditions for power quality improvement. Exhaustive simulations studies are carried out to analyze the performance of the system for harmonic and reactive power compensation for non-linear load. It is observed from simulation results that hybrid active power gives better performance as compared to shunt active power filter. The THD of the source voltage and source current are below 5% and 3% respectively using hybrid active power filter, which is recommended by IEEE 519: 1992 standard. The dynamic performances of both shunt and hybrid active power filters have been also studied and compared for constant as well as variable source voltages. It is observed from the comparison tables that hybrid APF provides better dynamic performances as compared to shunt APF in terms settling time, maximum overshoot, and maximum undershoot, and output ripple of DC offset voltage.